
5
Data Communication:
XML, XSLT, and JSON

An important part of any type of distributed application is how data is pushed around between
tiers or layers of the application. Additionally, with Ajax, several concepts are fairly important to
know and understand, concepts involved with building distributed heterogeneous environments.
Accordingly, in this chapter, you are going to look at:

❑ XML — XML is Extensible Markup Language. It is primarily used for data interchange.

❑ XSLT — XSLT is Extensible Stylesheet Language Transformations. XSLT is designed to
take XML data from one format and put it into another format.

❑ JSON — JSON is the JavaScript Object Notation. JSON is a lightweight data interchange
format.

When tied together with web services, XML and JSON allow for data interchange between differ-
ent operating systems and also across the Internet. This is a major change from systems that are
heavily tied together and require that each system run a specific operating system merely because
of the format the data is communicated in. Another advantage web services provide these data
interchange formats is that web services typically run on HTTP. HTTP runs on port 80. Port 80 is a
very widely used port and is not blocked, unlike many other ports and protocols, such as
Microsoft’s Distributed Component Object Model (DCOM) objects.

Trying to put all information about XML, XSLT, and JSON into one chapter will not do any of
the subjects justice. This chapter attempts to cover enough information regarding these products
so that the reader will have a basic understanding of these technologies as they relate to data com-
munication. However, these topics can each fill a thousand-page book and not completely cover
the subject. Wrox offers several good, complete books on the subject of XML and XSLT, including
Beginning XML, Third Edition (Wiley, 2004), XSLT 2.0 Programmer’s Reference, Third
Edition (Wiley, 2004), X Path 2.0 Programmer’s Reference (Wiley, 2004). You can find these
and other titles at www.wrox.com.

This chapter assumes that you are using Visual Studio 2005 and .NET 2.0. Also, you can down-
load the code samples for this chapter (Chapter 5) at http://beginningajax.com.

08_78544X ch05.qxp 7/18/06 3:15 PM Page 103

XML
I won’t bother you with all of the grand hoopla (and already well covered) talk about how XML will do
this or that. Suffice it to say, it is fairly widely used. XML work began at the level of the W3C in 1996. It
was formally introduced in February 1998. XML won’t wax your floors, and it is not a dessert topping;
however, take a quick look at what XML really is and what features it has that are well designed for data
transfer and storage:

❑ XML is based on Standard Generalized Markup Language (SGML) — Having a format based
on existing international standards, such as SGML, which has been used since 1986, means that
you have an existing body of knowledge to draw upon.

❑ It has a self-describing format — The structure and field names are well known.

❑ It has textual representation of data — This textual representation of data allows computer science
data structures to be represented textually. These data structures include trees, lists, and records.

❑ It is both human- and machine-readable — This is an improvement over binary/machine data
because humans can read it, which allows for simple visual inspection of the data.

❑ It has multiple-language support — It supports information in any human language as well as
ASCII and Unicode.

❑ It is efficient and consistent — Its strict syntax and parsing requirements allow the parsing
algorithms to perform efficiently and consistently.

❑ It is widely applicable — The hierarchical structure of XML is appropriate for many types of
documents.

❑ It is platform-independent — By being text-based, XML is relatively platform-independent and
relatively immune to changes in technology.

All that said, XML is not the best solution for everything. XML has several weaknesses that program-
mers need to be aware of. These are:

❑ XML is fairly verbose — In some cases, an XML representation of data may be redundant. The
result may be higher bandwidth and CPU processing needs. With compression, the storage cost
and bandwidth needs may be negated; however, the cost may be increased storage CPU pro-
cessing requirements. In addition, by compressing the data, the advantage of XML being human
readable is almost certainly lost.

❑ Data storage requirements do not support a wide array of datatypes. The result is that the
numeric e value of 2.781828 may not easily be identified as a floating-point value or a string
with a width of eight characters. XML Schema and validation routines provide this support;
however, XML does not natively provide this information.

❑ Mapping to a relational database model may be difficult — Complex XML layouts may not
easily map to a relational database model.

History of XML
XML can trace its heritage back to the mid 1960s with roots in Generalized Markup Language (GML) from
IBM. SGML is based on the GML work done at IBM. SGML is a metalanguage that was standardized in

104

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 104

1986 by ISO standard “ISO 8879:1986 Information processing — Text and office systems — Standard
Generalized Markup Language (SGML).” After that there were several modifications of the standard
to correct some omissions and clear up some loose ends.

In mid-1996, work began on integrating SGML and the web. During the working time, the group had
various names for the specification until it finally decided on Extensible Markup Language (XML). This
group worked throughout 1997, and on February 10, 1998, the W3C approved the result as a W3C rec-
ommendation. This is sometimes referred to as XML 1.0.

Minor revisions of XML 1.0 have taken place. The current revision is known as XML 1.0 Third Edition.
This revision was published on February 4, 2004.

The XML 1.1 version was published on February 4, 2004, the same day as the XML 1.0 Third Edition.
XML 1.1 has been primarily designed to assist those with unique needs, such as mainframe/host devel-
opers. XML 1.1 is not widely implemented at this time.

There is talk and discussion regarding future versions of XML. There is some talk regarding XML 2.0
that would have it eliminate Document Type Definitions (DTDs) from syntax, integration of namespaces,
and the addition of other features into the XML standard. In addition, the W3C has had some prelimi-
nary discussion regarding the addition of binary encoding into the XML feature set. There is no official
work to include binary encoding, merely discussion and investigation, at the time of this writing.

XML Documents
Take a look at what a simple valid XML document looks like:

<?xml version=”1.0” encoding=”UTF-8”?>
<menu>

<menuitem>
<item>Hamburger</item>
<item>French Fries</item>
<item flavor=”Chocolate”>Milk Shake</item>
<cost>4.99</cost>

</menuitem>
</menu>

The first line of the file is the XML declaration. This line is optional. It contains information regarding the
version of XML, typically version 1.0, character encoding, and possibly external dependencies. Next,
with XML, there must be one root element. In the preceding example, the <menu> tag is the root element.

The rest of the document contains a set of nested elements, which can be further divided into attributes
and content. An element is typically defined with a start tag and an end tag. In the preceding example,
you have a start tag of <item> and an end tag of </item> for your list of menu items. The end tag can
be omitted if the start tag is defined as <item />. The content of the item is everything that is between
the start and end tags. Elements may also contain attributes. Attributes are name/value pairs included
within the start tag and after the element name. Attribute values must be quoted with a single or double
quotation mark. Each attribute name should occur only once within an element. In the preceding code,
the item with value of Milk Shake has an attribute. The name of the attribute is flavor and the value is
“Chocolate”. In addition to text, elements may contain other elements. In the preceding code example,
the <menuitem> element contains three individual <item> elements.

105

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 105

XML Document Correctness
For an XML document to be considered to be correct, it must meet two requirements. It must be:

❑ Well formed — A well-formed document meets all of the XML syntax rules. A parser must refuse
to process a document that is not well formed. A well-formed document must conform to the
following rules:

❑ XML declaration, processing instructions, encoding, and other information may exist in
the XML document.

❑ Only one root element is specified in the XML document.

❑ Elements that are not empty are defined with both a start tag and an end tag.

❑ Empty elements may be marked with the empty element tag. An example is <item />.

❑ Attributes must be enclosed in single or double quotation marks. Attribute names are
case-sensitive.

❑ Tags may be nested but must not overlap.

❑ The document must use the specified encoding. UTF-8 is the default.

❑ Elements names are case-sensitive.

❑ Valid — A valid document has data that conforms to a set of content rules. These rules describe
correct data values and document organizational structure. (For example, the datatypes in an
element must match.)

❑ XML documents that comply with a defined schema are defined as valid. An XML Schema is a
description of a type of XML document. The schema is typically expressed as constraints on the
structure and content of the document. This is above and beyond the basic constraints imposed
by XML. You will find out more about schemas a bit later in this chapter.

Try It Out Creating Valid and Well-Formed XML
XML requires that elements be properly next and not overlap. The following example shows invalid
XML because of the overlapping of tags with the <item> tag. In the example that follows, a tag is open,
then a second tag of the same type is opened, the first <item> tag is closed, and then the second <item>
tag is closed.

<?xml version=”1.0” encoding=”UTF-8”?>
<menu>

<menuitem>
<item>Hamburger<item></item>

French Fries</item>
<item flavor=”Chocolate”>Milk Shake</item>

</menuitem>
</menu>

106

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 106

Consider the following code sample that is not well formed. This example contains no root element.

<?xml version=”1.0” encoding=”UTF-8”?>
<item>Hamburger</item>
<item>French Fries</item>
<item flavor=”Chocolate”>Milk Shake</item>

For this example to be well formed, a root element must be added. Now this document is set up so that
multiple menu items may be created and is more along the lines of what is desired:

<?xml version=”1.0” encoding=”UTF-8”?>
<menu>

<menuitem>
<item>Hamburger</item>
<item>French Fries</item>
<item flavor=”Chocolate”>Milk Shake</item>

</menuitem>
</menu>

Figure 5-1 shows a simple XML example after it has been parsed and displayed in Internet Explorer v6.

Figure 5-1

Now compare the previous example to the following invalid XML:

<?xml version=’1.0’ encoding=’UTF-8’?>
<menu>

<menuitem >
<item>Hamburger</item>
<item>French Fries</item>
<item>Milk Shake</item>

</MenuItem> <!— Note the capital M and I -->
</menu>

107

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 107

Figure 5-2 shows the result in Internet Explorer. In this example, the closing </MenuItem> does not
match the opening <menuitem> because the opening and closing tags do not match from the standpoint
of case.

Figure 5-2

Entity References and Numeric Character References
Within XML is the need to store special characters. These special characters are entity characters and
numeric character references.

An entity in XML is body of data, typically text, which contains unusual characters. An entity reference in
XML is a placeholder for an entity. XML contains several predefined entities The entity’s name is prefixed
with an ampersand (&) and ends with a semicolon (;). The following is a full list of redefined entities:

❑ The ampersand character (&) is defined as &.

❑ The left bracket, or less than, character (<) is defined as <.

❑ The right bracket, or greater than, character (>) is defined as >.

❑ The single quote, or apostrophe, character (‘) is defined as '.

❑ The double quote character (“) is defined by ".

Additional entities may be defined in a document’s DTD — see the next section for more on DTDs.

Numeric character references are similar to entities. Instead of merely the & followed by the entity name
and ending with the semicolon, a & and a # character are followed by a decimal or hexadecimal charac-
ter representing a Unicode code point and a semicolon. For example, the & character may also be defined
as &.

DTD
A Document Type Definition (DTD) is the original syntax for XML. A DTD is inherited from SGML.
Although a DTD is defined in the XML 1.0 standard, its use is limited for several reasons:

108

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 108

❑ DTDs lack support for new features of XML. For example, there is no support for namespaces.

❑ Not all parts of an XML document can be expressed within a DTD.

❑ DTDs use a syntax inherited from SGML, as opposed to an XML syntax.

XML Schema
The successor to DTDs is XML Schema. Another term for XML Schemas is XML Schema Definition
(XSDs). XSDs are better suited for describing XML languages than DTDs. XSDs have some of the follow-
ing features:

❑ Have datatyping support

❑ Allow for detailed constraints on a document’s logical structure

❑ Are required for using XML in validation framework

❑ Use an XML-based format

Here is an example XML document for a test. In this example, the MenuSchema will be used to validate
the menu XML document.

<?xml version=”1.0” encoding=”UTF-8”?>
<menu xmlns=”http://my-example.com/menus”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://my-example.com/menus Menu2.xsd”>

<menuitem>
<item>Hamburger</item>
<cost>1.99</cost>

</menuitem>
<menuitem>

<item>Drink</item>
<cost>.99</cost>

</menuitem>
<menuitem>

<item>Fries</item>
<cost>.49</cost>

</menuitem>
</menu>

Here is an example XSD file that will validate that document:

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema xmlns=”http://my-example.com/menus”
xmlns:xs=”http://www.w3.org/2001/XMLSchema” targetNamespace=”http://my-
example.com/menus” elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>
<xs:element name=”menu”>

<xs:annotation>
<xs:documentation>Menu is the root element</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name=”menuitem” maxOccurs=”unbounded”>

109

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 109

<xs:complexType>
<xs:sequence>

<xs:element name=”item” type=”xs:string”/>
<xs:element name=”cost” type=”xs:decimal”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:schema>

In this example code, the menuitem is validated. The <item> tag is validated as a string, which is fairly
easy to validate, and the <cost> tag is validated as a decimal. Within the <menu> tag, there are multiple
copies of the <menuitem> tag that are allowed. Above the <menuitem> tag is the <menu> tag.

Try It Out Validating XML
Given that there is some XML and the need to validate the XML, take a look at some code to validate the
XML in a .NET 2.0 application. In this example, the code creates an XmlSchemaSet object. This object
holds the contents of the XML Schema file. An XmlReaderSettings object is created. This object holds
the XML Schema and any other settings necessary for reading the XML feed. The XmlReader document is
created from XML feed and the XmlReaderSettings object. Once the XmlReader object is created, any
errors that occur when reading the XML document are raised and passed to the XmlReaderSettings’
ValidationEventHandler method. In this example, the user is notified in a label.

ASPX page
<form id=”form1” runat=”server”>
<div>
Load Result: <asp:Label ID=”lblLoadResult” runat=”server” Text=””></asp:Label>
</div>
</form>

Code-Behind
protected void Page_Load(object sender, EventArgs e)
{

System.Xml.XmlReaderSettings xmlRDS = new System.Xml.XmlReaderSettings();
System.Xml.Schema.XmlSchemaSet sc = new System.Xml.Schema.XmlSchemaSet();
sc.Add(“http://my-example.com/menus”, Server.MapPath(“Menu2.xsd”));
xmlRDS = new System.Xml.XmlReaderSettings();
xmlRDS.ValidationEventHandler += new

System.Xml.Schema.ValidationEventHandler(xmlRDS_ValidationEventHandler);
xmlRDS.ValidationType = System.Xml.ValidationType.Schema;
xmlRDS.Schemas.Add(sc);
System.Xml.XmlReader xmlRd =

System.Xml.XmlReader.Create(Server.MapPath(“Menu2.xml”), xmlRDS);
while (xmlRd.Read())
{
}

}
private void xmlRDS_ValidationEventHandler(object sender,
System.Xml.Schema.ValidationEventArgs e)

110

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 110

{
this.lblLoadResult.Text = “Validation Error: “ + Convert.ToString(e.Message) +

“
”;
}

The XmlReaderSettings object specifies the settings used in reading in some XML. This object is used
with the static .Create() method when an XmlReader object is created. The properties to note are the
ValidationType, which is set from an enumeration, and the Schemas property, which is based on the
SchemaSet object. The XmlSchemaSet object contains a set of XML Schemas to validate against. If the
XML is not valid based on the schema, an XmlSchemaException() is generated.

Parsing XML
Two popular types of XML processing exist — the Document Object Model (DOM) and the Simple API
for XML (SAX). The key difference between these two approaches is that the first loads the entire XML
document into an in-memory data structure, whereas the latter iterates over the XML document one
piece at a time in a forward-only, read-only fashion.

DOM Parsing
The Document Object Model (DOM) is an API that allows access to XML and HTML documents and
their elements. The DOM is programming-language- and platform-independent.

Typically, XML parsers have been developed that must make use of a tree structure will all elements
fully loaded into the parser before any operations occur. As a result, DOM is best used for applications
where the document elements are randomly accessed and manipulated.

There are several levels of DOM specification. These specification levels are:

❑ Level 0 — A Level 0 DOM contains all of the vendor-specific DOMs that existed before the W3C
standardization process.

❑ Level 1 — A Level 1 DOM allows for the navigation of documents and modification of their
content.

❑ Level 2 — A Level 2 DOM contains support for XML namespaces, filtered views, and events.

❑ Level 3 — A Level 3 DOM consists of support for:

❑ DOM Level 3 Core

❑ DOM Level 3 Load and Save

❑ DOM Level 3 XPath

❑ DOM Level 3 Views and Formatting

❑ DOM Level 3 Requirements

❑ DOM Level 3 Validation

For further information on the DOM, please refer to Chapter 3.

111

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 111

SAX Parsing
Simple API for XML (SAX) parsing is another form of processing of XML files. A SAX-based parser
handles XML as a single stream of data that is available only unidirectionally. As a result, accessing
previously used data will result in the XML stream being reread and reparsed.

SAX processing is based on asynchronous events. In this model, as the XML document is read and
parsed, events are fired as set up by the program. This is believed to result in faster XML processing than
the DOM, because of a much smaller memory footprint compared to using a fully loaded and parsed
DOM tree. Truthfully, the speed comparison should be based on a specific program, so generalities like
this do not hold up in all situations. The other problem with SAX, which is more significant than the
unidirectional issues, is the event-driven programming model. Accurately creating an event-driven
program can be very complicated and frustrating.

XML Summary
As you have noticed, XML can be a very complicated topic. In this section, we have attempted to cover
the basic topics that you need regarding what XML is, but this is not meant to be a complete reference
for XML, just a set of basic information. For more complete information, please reference the books men-
tioned at the beginning of the chapter. In the next section, we will look at the processing XML with a
technology referred to as XSLT.

XSLT
Extensible Stylesheet Language Transformations (XSLT) is an XML-based language used to convert XML
from one format to another. These other formats may be a different XML Schema, HTML, plain text,
PDF, or some other format. XSLT grew out of the Extensible Stylesheet Language (XSL) development
effort within the W3C. The XSLT specification was first published by the W3C as a recommendation on
November 16, 1999.

How Processing Occurs
The XSLT language is declarative. Being declarative means that the XSLT stylesheet is made up of a set
of templated rules. Each rule in the collection specifies what to add to the resulting output, and the
result is then sent to the output. Once an XSLT processor finds a node that meets the processing condi-
tions, instructions within the template rules are processed sequentially.

The XSLT specification defines a transformation in terms of source and results. This keeps from locking a
developer into a set of system specific APIs.

XSLT uses the X Path language for identifying the appropriate data in the source tree. X Path also pro-
vides a range of functions that assist XSLT processing.

Now take a look at some example XSLT coding. First, consider the following sample XML:

112

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 112

<?xml version=”1.0” encoding=”UTF-8” ?>
<menuitem xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”MenuSchema.xsd”>

<item>Hamburger</item>
<item>French Fries</item>
<item>Milk Shake</item>
<cost>4.99</cost>

</menuitem>

Suppose that from this code you want to pull out the elements within the <item> tags. The following
XSLT code will pull out a list of items.

<?xml version=”1.0” encoding=”UTF-8” ?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:template match=”/item”>
<xsl:apply-templates />

</xsl:template>
<xsl:template match=”item”>

<xsl:value-of select=”.” />

</xsl:template>
<xsl:template match=”cost” />

</xsl:stylesheet>

This code works by looking for the matches for the <item> tag, pulling them out, and sending them to
the output stream. With the .NET Framework, there is an XML Transform control. By setting the con-
trol’s DocumentSource and TransformSource properties, the control may be used to easily output the
results of an XML file being transformed by an XSLT file. The result of this XML file being transformed
by the XSLT file is Figure 5-3.

Figure 5-3

Figure 5-4 shows how XSLT processing occurs at a high level.

113

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 113

Figure 5-4

XSLT processing occurs in the following steps:

1. The XSLT stylesheet is loaded by the XML parser.

2. The XSLT stylesheet is converted into a tree of nodes. These nodes are also referred to as a
stylesheet tree.

a. XSLT stylesheet errors are detected.

b. Include and import commands are handled.

3. The XML input is loaded by the parser and converted into a tree of nodes.

4. Whitespace only text nodes are removed from the stylesheet tree.

5. Whitespace-only text nodes are removed from the source tree.

6. The stylesheet tree is supplemented with built-in template rules for default processing.

7. The root node of the source tree is processed along with child nodes.

a. The template rule that best matches a node is processed.

b. Template rules are created. Elements are treated as instructions and their semantics are
interpreted. Elements and text nodes in the template rules are copied specifically into
the result tree.

8. The result tree is serialized, if necessary, according to any provided xsl:output instructions.

Built-In Functions
Like many of programming languages, XSLT provides a set of built-in commands. These commands
range from string processing to date processing and looping operators, such as a for loop structure. In
this section, we will look at some of the functions built into XSLT processors. These functions provide
the basics upon which many XSLT operations are built.

XSLT <template>
The <xsl:template> element is used along with the match attribute to build templates and to associate
them with XML elements.

<xsl:template match=”item” />

XSLT Declaration

XSLT ProcessorInput File Output File

114

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 114

In this example function, the XSLT processor will search for the node named “item”. If a match is made,
then additional functionality is performed.

XSLT <value-of>
The XSLT <xsl:value-of> element is used to extract the value of an XML element. The extracted value
is then added to the output’s stream of the transformation. Consider the following example:

<xsl:value-of select=”item” />

This code will pull the data from the item element of an XML file, and then add that value to the stream
of the transform’s output.

XSLT <for-each>
The XSLT <xsl:for-each> element is used to provide looping support in XSLT. Take a look at the fol-
lowing example:

<xsl:for-each select=”item” />
<xsl:value-of select=”.” />

</xsl:for-each>

This example will pull all the item nodes from the specified node set and return the value of the current
node to the XSLT stream.

XSLT <sort>
The XSLT <sort> element is used to assist the <xsl:for-each> element in sorting the node set pro-
duced by the <xsl:for-each> element.

XSLT <if>
The <xsl:if> element is used to test the content of an XML file, much like the if/endif of a traditional
computer programming language. Take a look at the following example:

<xsl:if test=”cost > 1.00”>
..........
</xsl:if>

This if/endif are often used for conditional tests. With these tests, program execution can be altered
based on these tests. If the condition is true, the commands within the <xsl:if></xsl:if> are exe-
cuted. In this example, if the cost node has a value of greater than 1.00, the code between the <xsl:if>
and </xsl:if> is executed.

XSLT <choose>
The <xsl:choose> element is used along with <xsl:when> and <xsl:otherwise> to perform multi-
ple conditional tests. Consider the following code:

<xsl:choose>
<xsl:when test=”expression”>
...........
</xsl:when>
<xsl:otherwise>

115

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 115

...........
</xsl:otherwise>

</xsl:choose>

In this example, the expression is tested. When the expression is true, the code within the
<xsl:when></xsl:when> tags is executed. If not code is executed, the processing will drop out to the
<xsl:otherwise></xsl:otherwise> tags and execute within those tags.

Processing with XSLT
Now that you have looked at some of the main XSLT directives, take a look at some more complicated
examples of processing XSLT. In this example, you are going to perform some string processing, condi-
tional processing, and mathematical processing in some examples.

Try It Out String Processing
String processing is something that is very common to modern programming languages, and XSLT is no
different. It has a number of built-in string processing commands. These commands allow for the search-
ing of strings, returning the location of characters within strings, and other processing functions. You
will use the following XML file:

<?xml version=”1.0” encoding=”UTF-8”?>
<employees xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<Name>John Jones</Name>
<Name>Mike Smith</Name>
<Name>William Skakespeare</Name>
<Name>Wally McClure</Name>

</employees>

You need to perform several operations on this XML code. These operations include getting the length of
the name, parsing for the first name of the employee, and parsing for the last name of the employee. The
following XSLT file will perform these operations:

<?xml version=”1.0” encoding=”UTF-8” ?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:template match=”/”>
<table border=’1’>

<tr>
<th>

Employee Name:
</th>
<th>

Length of Name:
</th>
<th>

First Name:
</th>
<th>

Last Name:
</th>

116

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 116

</tr>
<xsl:apply-templates />

</table>
</xsl:template>
<xsl:template match=”Name”>

<tr>
<td>

<xsl:value-of select=”.” />
</td>
<td>

<xsl:value-of select=”string-length(.)” />
</td>
<td>

<xsl:value-of select=”substring-before(., ‘ ‘)”/>
</td>
<td>

<xsl:value-of select=”substring-after(., ‘ ‘)”/>
</td>

</tr>
</xsl:template>

</xsl:stylesheet>

The XML and XSLT file can be processed by using an XML control like this:

<asp:Xml ID=”XMLStringExample” runat=”server” DocumentSource=”XMLStringTest.xml”
TransformSource=”XMLStringTest.xslt”>

In this example, a table is created. Each row contains four columns.

❑ The first column is the name of the employee. This is pulled straight from the <name> tag.

❑ The second column contains the length of the employee’s name.

❑ The third column contains all of the employee names before the first space.

❑ The final column contains all of the employee names after the first space.

This example assumes that the format for the names is first name, space, and then last name.

Figure 5-5 displays the output of the example XML file being processed by the XSLT file.

Figure 5-5

For a listing of the methods available for string processing in XSLT, review Appendix A.

117

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 117

Try It Out Numeric Processing
XSLT also possesses the ability to perform standard mathematical operations like many other program-
ming languages. These operations can range from the simple addition and subtraction to ceiling, floor,
and rounding.

Take a look at the following XML file:

<?xml version=”1.0” encoding=”utf-8” ?>
<numbers xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<a>9
24.6
<c>-1</c>
<d>4.3</d>
<e>5</e>

</numbers>

You are going to process the numbers in this set and perform several operations on them — displaying
data, performing a sum on the nodes, performing a modulo operation, and finally running through a
conditional to output a string depending on whether or not the processed value is negative. The XSLT
file that follows will process the preceding numeric XML file and output the numeric values.

<?xml version=”1.0” encoding=”UTF-8” ?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns=”http://www.w3.org/1999/xhtml”>

<xsl:template match=”/”>
<table border=’1’>

<tr>
<th>

a
</th>
<th>

b
</th>
<th>

c
</th>
<th>

d
</th>
<th>

e
</th>
<th>

sum of numbers
</th>
<th>

a mod e
</th>
<th>

Is (a-b) negative or positive
</th>

</tr>
<xsl:apply-templates />

118

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 118

</table>
</xsl:template>
<xsl:template match=”numbers”>

<tr>
<td>

<xsl:value-of select=”a” />
</td>
<td>

<xsl:value-of select=”b” />
</td>
<td>

<xsl:value-of select=”c” />
</td>
<td>

<xsl:value-of select=”d” />
</td>
<td>

<xsl:value-of select=”e” />
</td>
<td>

<xsl:value-of select=”sum(*)”/>
</td>
<td>

<xsl:value-of select=”a mod e”/>
</td>
<td>

<xsl:choose>
<xsl:when test=”(a - b) > 0”>

positive
</xsl:when>
<xsl:when test=”(a - b) < 0”>

negative
</xsl:when>
<xsl:otherwise>

0
</xsl:otherwise>

</xsl:choose>
</td>

</tr>

</xsl:template>
</xsl:stylesheet>

The XML and XSLT file may be processed by using an XML control like this:

<asp:Xml ID=”XmlNumericExample” runat=”server”
DocumentSource=”XMLNumericExample.xml”

TransformSource=”XMLNumericExample.xslt”>

Figure 5-6 shows the output of the numeric XML file after it has been processed by the numeric XSLT file.

❑ The first five columns display the values from the XSLT file.

❑ The sixth column displays the sum of the numbers.

❑ The seventh column displays a modulo e.

119

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 119

❑ The last column shows a combination of conditional tests, <xsl:choose> and <xsl:when>
tags, as well as testing using less than and greater than commands.

Figure 5-6

For more information on the processing functions built into XSLT, please refer to Appendix A on XSLT
elements.

Writing Functions in XSLT
The XSLT processor in the .NET Framework and MSXML component support only the XSLT version 1
standard. This standard version makes it a little bit hard to write functions within XSLT. However, these
components support the ability to write custom business logic. The ability to write these custom busi-
ness objects is provided by extending XSLT, using traditional programming languages, such as VBScript,
JavaScript, or any .NET-support language. Given the widespread acceptance of JavaScript, these exam-
ples use JavaScript to extend XSLT.

XSLT extensions are mostly specific to a given processor. For more comprehensive examples, please refer
to the documentation provided by the XSLT processor that is being used.

XSLT 1.0 provides two types of extensions.

❑ Extension elements, which include such things as xsl:transform, xsl:template, and the like.

❑ Extension functions, which include string, substring, and the like.

XSLT 1.0 has a template base model. XSLT processors need information to distinguish between static
content and extension elements. This can be accomplished by some commands that the processor recog-
nizes. The code that follows shows an example:

<xsl:transform version”1.0” xmlns:xsl=http://www.w3.org/1999/XSL/Transform
xmlns:out=http://www.w3.org/1999/xhtml
xmlns:ext=http://exampleurl/extension
extension-element-prefixes=”ext”>
<xsl:template match=”/”>

<out:html>
<ext:ExampleFunction/>

</out:html>
</xsl:template>
</xsl:transform>

This example shows the very basics of calling an external function in XSLT. The xml namespace for out-
put is defined by the xmlns:out attribute and the extension’s namespace is added through the
xmlns:ext attribute. The output is formatted for HTML through the <out:html> tag, and a call is
made to the external ExampleFunction through the <ext:ExampleFunction/> tag. This example calls
out to an external function using the MSXML calling convention.

120

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 120

X Path
The XML Path Language (X Path) is a non-XML syntax for addressing parts of an XML document. X
Path has been adopted by developers as a simple query language. X Path is a sequence of steps to get
from one set of nodes to another set of nodes. The steps are separated by a slash (/) character. Each step
is made up of the following parts:

❑ Axis Specifier — The Axis Specifier indicates a navigation direction. The axes available are:

❑ child

❑ attribute

❑ descendant-or-self

❑ parent

❑ ancestor

❑ ancestor-or-self

❑ following

❑ precending

❑ following-sibling

❑ self

❑ namespace

❑ Node Test

❑ Predicate

In X Path:

❑ The root element is defined by /*.

❑ All elements are defined as //*.

❑ All top-level elements are defined as /*/*.

Therefore, an example X Path expression can look like /CustomerOrder/Item. This will select all of the
nodes that are named Item and a child of CustomerOrder.

A more complex expression might be specified as: /CustomerOrder/Item/following-sibling::*[1].
This expression selects all elements that are below the Item node and indicates the Item node is a child of
the CustomerOrder node.

In X Path, the expression @ can be used to get at the attribute axis. For example, the expression
//Item[@price > 2] selects the Item nodes that have an attribute of price that is greater than the
value of 2.

Try It Out X Path Example
In this Try It Out, you take a look at X Path processing using one of the menu examples. In this example,
you are going to search for the <item> tag of one of the Menu2.xml file’s menuitems. Take a look at the
example code in C# and ASP.NET:

121

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 121

System.Xml.XPath.XPathDocument document = new
System.Xml.XPath.XPathDocument(Server.MapPath(“Menu2.xml”));
System.Xml.XPath.XPathNavigator navigator = document.CreateNavigator();
System.Xml.XPath.XPathNodeIterator nodes =
navigator.Select(“//menu/menuitem[cost=.49]/item”);
while (nodes.MoveNext())
{

Response.Write(nodes.Current.Value);
}

In this code, the item tag of the menutitem will be returned if the cost of the item is set to .49. The code
works by creating an X Path DOM document and loading it with the contents of the Menu2.xml file.
The next step is to create the XPathNavigator object. The X Path expression is passed though the
XPathNavigator’s .Select() method and returns a collection of nodes that can then be iterated
through.

Now, take a look at the XML file that you are working with for this example:

<?xml version=”1.0” encoding=”UTF-8”?>
<menu>

<menuitem>
<item>Hamburger</item>
<cost>1.99</cost>

</menuitem>
<menuitem>

<item>Drink</item>
<cost>.99</cost>

</menuitem>
<menuitem>

<item>Fries</item>
<cost>.49</cost>

</menuitem>
</menu>

From the XML feed, you can see that the only menuitem that matches the cost of .49 is the Fries item
and that is the only result that is returned from the sample X Path code.

Integrating XML and Ajax
Now that we’ve covered XML, we come to the inevitable question — how do we integrate this with
Ajax? It’s actually a fairly simple process if your development team has its own library or needs to
debug something that is occurring in an existing library.

Take a quick look at some code. In this example, you are using the Sarissa client-side library to perform
the communication back to the server. For the callback to the server, you get a list of people in an XML
format. This is put within an XML DomDocument. In this example, the code is loaded synchronously, but
it could be loaded asynchonrously with a callback. You have created a string holding the XSLT com-
mands. This string is put within an XSLTProcessor() object. The final steps are to use the XSLT object
to transform the XML DomDocument and to then output the data to the browser.

122

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 122

<script language=”javascript” src=”SarissaLibrary.js”>
<script language=”javascript”>
var xsltProc = new XSLTProcessor();
var xsltDoc = Sarissa.getDomDocument();
var xsltStr = “<?xml version=\”1.0\” encoding=\”UTF-8\” ?>” +

“<xsl:stylesheet version=\”1.0\”
xmlns:xsl=\”http://www.w3.org/1999/XSL/Transform\”
xmlns=\”http://www.w3.org/1999/xhtml\”>” +

“<xsl:template match=’/’>” +
“<table border=’1’>” +

“<tr>” +
“<th>” +

“Employee Name:” +
“</th>” +

“</tr>” +
“<xsl:apply-templates />” +

“</table>” +
“</xsl:template>” +
“<xsl:template match=\”Name\”>” +

“<tr>” +
“<td>” +

“<xsl:value-of select=\”.\” />” +
“</td>” +

“</tr>” +
“</xsl:template>” +
“</xsl:stylesheet>”;

xsltDoc = (new DOMParser()).parseFromString(xsltStr, “text/xml”);
xsltProc.importStylesheet(xsltDoc);
function SimpleExample() {

var xmlDoc = Sarissa.getDomDocument();
xmlDoc.async = false;
xmlDoc.load(“XMLStringTest.xml”);
var newDocument = xsltProc.transformToDocument(xmlDoc);
document.write(Sarissa.serialize(newDocument));

}
SimpleExample();

Figure 5-7 shows the output of the preceding example.

Figure 5-7 123

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 123

JSON
As indicated earlier in the chapter, JSON is the JavaScript Object Notation, and it is a lightweight data
interchange format. JSON’s chief advantage over XML is that the data may be parsed fairly easily using
JavaScript’s built-in eval() method. And although JSON has JavaScript in the name, it may actually be
used by various languages.

Layout of JSON
JSON’s usefulness is in the area of data interchange, and in some ways it is similar to XML. However,
there are some key conceptual differences. Whereas XML is conceptually similar to working with
databases and is designed to primarily work with sets of data, JSON is conceptually similar to arrays
and collections in procedural programming languages. That means JSON is designed to be easily usable
from within a procedural programming language.

JSON is built on the following data structures:

❑ Name/value pairs — This may be called an object, record, structure (struct), HashTable, keyed
list, or associated array.

❑ List of values — This list of values is referred to an array in most programming languages.

Take a look at the specific layout of JSON in the following table.

Name Description

object {}

{ members }

members string : value

members , string : value

array []

[elements]

elements value

elements , value

value string, number, object, array, boolean, null

With JSON, these items take on the following forms:

❑ An object is a set of name/value pairs. An object begins with a left brace ({) and ends with a right
brace (}). Names are followed by a colon (:). Name/value pairs are separated by a comma (,).

❑ An array is a collection of values. Arrays start with a left bracket ([) and end with a right
bracket (]). Values within an array are separated by a comma (,).

124

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 124

❑ A value may be one of several datatypes. If it is a string, it will be contained within double quo-
tation marks. Other datatypes supported within an array are numbers, booleans, null, objects,
and arrays.

❑ A string is a collection of Unicode characters wrapped within double quotation marks.
Characters may be escaped by using the forward slash character (/).

JSON Example
Take a look at some data encoded in JSON:

{‘Tables’:[{
‘Name’:’Table1’,’Rows’:[
{‘tblStateId’:1,’State’:’Tennessee’},
{‘tblStateId’:2,’State’:’Alabama’}]}],
‘getTable’:function(n){return _getTable(n,this);}}

This example text displays the textual representation of an ADO.NET dataset. In this JSON object, there
is a table with two rows. There are two columns. These columns are tblStateId and State. Row 1 con-
tains tblStateId:1 and State:Tennessee. Row 2 contains tblStateid:2 and State:Alabama.

Now you can look at the JavaScript code to actually use a JSON object. This JavaScript code runs in
Internet Explorer and uses the Sarissa client-side JavaScript library. It will pull data from a local web
server and then create an object based on a JSON object.

var xmlhttp = new XMLHttpRequest();
function clickme(){

xmlhttp.onreadystatechange= myHandler
xmlhttp.open(“GET”, “GetData.aspx”, true);
xmlhttp.send(null);

}
function myHandler() {

if (xmlhttp.readyState == 4) // READYSTATE_COMPLETE is 4
{
var strObj = xmlhttp.responseText;
var obj;
eval(“obj=” + strObj);
for(m in obj)

alert(m);
}

}

In this example, an XMLHTTP object is created and a request is sent to the web server. When the request
comes back, an object is created from the returned data and the properties of that object that are avail-
able are displayed in a pop-up window to the user.

The example that is shown uses the Sarissa library. This library is discussed in Chapter 9.

125

Data Communication: XML, XSLT, and JSON

08_78544X ch05.qxp 7/18/06 3:15 PM Page 125

Summary
In this chapter, you examined several topics related to data communication.

❑ XML — XML contains the raw data of a data transfer. It is human- and computer-readable in a
language-independent format.

❑ XSLT — XSLT is used to transform information from one XML format into another.

❑ X Path — X Path is used to navigate within an XML/XSLT document.

❑ JSON — JSON is a human- and computer-readable data interchange format that is less complex
then XML.

These topics form an important basis for heterogeneous communications, such as that used in Ajax and
between a web client and a web server. Knowing how XML, XSLT, and JSON are structured can be very
valuable as a basis of a custom Ajax library, for getting data between a web client and a web server, or
for being able to diagnose a problem in an existing library.

You can find more on the topics discussed in this chapter at the following sites:

❑ Wikipedia —http://en.wikipedia.org/wiki/XML

❑ “SGML Source” by Charles F. Goldfarb —www.sgmlsource.com

❑ World Wide Web Consortium (W3C) —www.w3c.org

❑ W3 Schools web site —www.w3schools.org

❑ JSON web site —www.crockford.com/JSON

126

Chapter 5

08_78544X ch05.qxp 7/18/06 3:15 PM Page 126

